Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 <ME> <24-08-2022>

CONTINUOUS INTERNAL EVALUATION - 3

Dept: ME	Sem / Div: 4 th	Sub: Fluid Mechanics	S Code: 18ME43
Date: 02/09/2022	Time: 9:30-11:00 am	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Qì	V	Questions	Marks	RBT	CO's
		PART A			
1		What is a veturimeter? Derive an expression for the discharge through a veturimeter.	10	L3	CO3
1	ŀ	The water: is, flowing through pipe of length 100m naving diameters 600mm at upper end and 300mm at			
	5	he longer end at the rate of 50 litres/sec. The pipe has a slope of 1 in 30. Find the pressure at the lower end if the pressure at the higher level is 19.62 N/cm ² .	9	L3	CO3
		Define the followings, Mach number, Sub-sonic flow Sonic flow and Super sonic flow	6	L2	CO5
		OR			
2		Derive Euler's equation of motion along a stream line and deduce Bernoulli's equation. State the assumptions made.	10	L3	CO3
	b	sub-marine moves horizontally in sea, A pitot static tube placed in front of sub-marine and along its axis is connected to the two limbs of U-tube manometer			
		containing mercury. The difference of mercury level is found to be 200mm. Find the speed of the sub-marine in	7	L3	CO3
		km/hr. Take specific of gravity of mercury as 13.6 and sea water as 1.026, $C_v = 0.98$.			
	c	Write short essay on the engineering application of CFD.	9	L2	CO5

Page: 1 / 2

	PART B				
3	a Derive an expression for velocity of sound in a fluid.		10	L:	CO5
	b Explain the necessity of CFD.		5	L	2 CO5
	c An orifice meter with orifice diameter 15 cm is inserting a pipe of 30 cm diameter. The pressure different measured by a mercury oil differential manometer the two sides of the orifice meter gives a reading of	on 50	10	L3	CO3
	cm of mercury. Find the flow rate of flow of oil of gr. 0.9 when the co-efficient of discharge of the orif meter=0.64.	- 1			
	OR				
4	a Calculate the stagnation pressure, temperature as density at the stagnation point on the nose of a plan which is flying at 800 km/hour through still air having a pressure 8.0 N/cm ² (abs.) and temperature -10°C. Tale	ne, ng	8	L3	CO5
the section of the second	a pressure 8.0 N/cm ⁻ (abs.) and temperature -10 C. Tan R = 287 J/kg K and $k = 1.4$.	10			
Section of the contract of the section of the secti	b Find the velocity, of bullet fired in standard air. If the mach angle is 30°. Take R = 287.14 J/kg K and k = 1 for air. Assume temperature is 15°C.	1e .4	7	L3	CO5
(Derive an expression for discharge through a triangula notch.	ar	10	L3	CO3

Prepared by: Satheesha Kumar K

Muny